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Lie algebraic approach to the coupled-mode oscillator 
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11451, Saudi Arabii 
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Abstract. The coupling of elecuomametic fields for the construction of light amplifiers is 
described by a certain Hamiltonian which can be expressed as the sum of three differential 
operators. Following the method of Steinberg and Dattoli ef al, the solution of Schriidinger's 
equation for the Hamiltonian of the system is constructed from the solutions of the corresponding 
equations for the components of the Hamiltonian. 

1. Introduction 

The construction of light amplifiers and frequency converters is based on the coupling of 
light waves in nonlinear dielectric crystals. In fact the structure of crystals has long utilized 
the phenomenon of light scattering from atoms or molecules having two energy levels. The 
fresuency of the incident beam may be shifted, up or down, by an amount equal to the 
difference in the two energy levels [I]. me  resulting lower and higher frequency scattered 
waves are the Stokes and anti-Stokes components, respectively. In Brillouin scattering, for 
example, an intense monochromatic laser source induces parametric coupling between the 
tyo scattered elecbomagnetic fields and accoustical phonons in the scattering medium. We 
may therefore conclude that the problem of the frequency converter and the paramefxic 
amplifier, where three electromagnetic fields are coupled, has played a significant role in 
the field of quantum optics [2-S]. 

The most familiar Hamiltonian which describes three coupled modes is of the form 

H 
(1.1) h 

where ai, U: are the boson annihilation and creation operators of the ith mode of frequency 
mi, y is the coupling constant, and h is Plank's constant. The energy conservation condition 
is expressed by the equality 01 = 02 + 03. Under certain conditions, the mode a]  can be 
replaced by its c-number, and then the Hamiltonian (1.1) takes the form 

- = w,  (a:a, + 4) + wZ(cqa2 + 4) + w 3 ( 4 u 3  + 4) + y(a:azu3 + u,a:a:) 

(1.2) 

Here p(t) is the phase pump which may be chosen so that p(t) = - - w I ~ ,  and A = ylorll, 
where or1 is the c-number for the operator al. In this case (1.2) can be re-written as 

H 
h - = OX(a:az + 4) +03(4a3  i) + A(aza3e'(w1f*(')) f cc). 

H = w(a+a + b+b + 1) + h(ab + U + b + )  (1.3) 
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where we have taken a = a2, b = a3, Ti = 1 and the system is assumed to be at exact 
resonance. 

It is interesting to point out that the evolution operator of the interaction part of the 
above Hamiltonian has been identified as a correlated squeeze operator, which is regarded 
as the Su(1, 1)-generalized coherent state, see for example [6,7]. On the other hand one of 
us (MSA) added (with a different coupling parameter) the frequency converter part to (1.3). 
where the statistical aspect for such a system is considered, and the quantum mechanical 
treatment was also given. For more details see [8-10]. Our purpose in the present work 
is to employ a Lie algebraic approach in order to find the most general solution for the 
wavefunction in the Schrodinger picture. 

The solution of the Cauchy problem for Schrodinger's equation 

lends itself to the methods of Lie algebra, as first laid down by Cartan and later developed 
by Miller [ll]. This follows from the observation that the Hamiltonian operator (1.3) is a 
linear combination of the three operators a+b+, ab and a+a + b+b + 1 which are closed 
under the commutation relation. Thus they generate a three-dimensional Lie algebra to 
which the more recent techniques of Steinberg [121 and Dattoli etal I131 can be applied. 

The underlying idea in Dattoli's approach is: given a partial differential equation, we first 
choose an appropriate Lie group G and identify a basis for its Lie algebra L(G) .  Since G is 
isomorphic to a Lie matrix group G', the matrix realization of G is used to write the image 
of the partial differential equation in G'. This gives the expressions for the I-parameter 
subgroups corresponding to the basis elements. Then, going back to the generators in G, 
we can use simple operational rules to arrive at the solution of the differential equation. 

2. Associated differential equations 

By defining 

K+ = a+b+ K- = ab K3 = ;(a'. + b+b + 1) (2.1) 

we see that the Hamiltonian (1.3) becomes [14, 151 

H = 20K3 +A(K+ + K-) (2.2) 

and that the commutation relations 

[K+, K-] = -2K3 [ K 3 ,  K*] = &K+ (2.3) 

a = ( 2 ~ ) - ' / ~ ( u q l  + ipl) (2.4) 

which can be recognized as an Su(1,l) Lie algebra, hold. Now we set 

b = ( ~ W ) - ' / ~ ( W ~ Z  + ipz) 

where p, = -ia/aql, pz = -ia/aqz so that 

1 q 1 . ~ 1 1 = [ 4 2 . ~ ~ I = i .  (2.6) 
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We shall tackle the Cauchy problem (1.4) by first considering the three initial-value 
problems 

Under the change of variables 

q1 = (20)-'IZ(x + y) 42 = (20)-ip(x - y) (2.10)' 

the differential equation in (2.7) becomes 

(2.1 1) 4i- af  = [(T - 2 x - + x 2 )  a - (3 a2 -5- a +y2)] f. 
at axz ax ay 

The general solution of (2.11), by separation of variables, is given by 

f ( x ,  y. t )  = 

where the constants am are determined by the initial condition 

1 
2 

m 

am exp - m2)i + - (x2 + y2) + i(mx + ny) 
m.n=-m 

m 

i ~ x ,  Y) = exp [&?+ Y')] a,, exp[i(mx +my)]. (2.12b) 

This equation clearly shows that a,. are the Fourier coefficients of f ( x ,  y) exp[-i(x2+y2)], 
given by 

1 

m.n=-m 

(2.12c) 
n 

a,. = - j z  j ?(x, Y )  exp [ - exp[i(mx + ny)ldxdy. 479 -z -n 

Using the inverse @ansformation 

(2.12d) 

we can express the solution in terms of the physical coordinates (q1,qZ): 

where the constants a,, are given by 
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The differential equation in (2.8) is 

and its general solution is 

(2.1%) 

where 

Substituting back x = G ( q 1  + qz) ,  Y = G ( q 1  - q 2 )  we get the solution of the 
problem (2.8) as 

Finally, (2.9) yields the differential equation 

(2.16) 

(2.17) 

(2.18) 

whose solution is 

Hj being tbe Hermite polynomial of order j. At t = 0, we obtain 

In view of the orthogonal relation 

the constants Cjk in (2.19a) are given by 
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3. Solution of the Cauchy problem 

Define the operators A = -iK+, B = -iK- and C = K3. Then, from (2.3). we have 

[C, A] = A [C, B] = - B  and [A, B] = 2C. (3.1) 

Thus the operators A, 23, C span a three-dimensional Lie-algebra which can be identified 
with s1(2), the Lie-algebra of the special linear group SL(2), (see [6]). A basis of s1(2), 
which corresponds to A, B, C satisfying (3.1) is given, by 

il) I - = (  0 0  ) I? .=(!  !+). (3.2) 
-1 0 

The actions of the 1-parameter subgroups exptA,exptB and exptC on a function 
f (41 ,42 )  are obtained by solving the problems 

(3.3) 

where the coefficients a,,, b,, and cjx are given by (2.14), (2.17) and (2.20). respectively, 
on replacing f, and I; by f. 

The matrix image of the partial differential equation (1.4) is 

at -A. iw 
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The solution of (3.6) is easily seen to be 

(3.7) 
COS K t  - i (O/K)  Sin K t  -(A f K )  Sill Kf  

-(A/K) sin xt cos ~b + i(w/x) sinxt 

where K = m. 
The solution of the Cauchy problems (1.4) can now be expressed as 

(3.8) 

Since the operator H belongs to the Lie-algebra spanned by A, B ,  C, which is identified 
with sl(2). the operator e-"H can be expressed as 

irH - 9(q1, 42. f )  =e- W 1 ,  q d .  

(3.9) e-irH = ea(t)CeB(t)BeyO)A 

where the functions or@), B(f) and v(t)  can be computed using (3.2) and (3.7): 

(3.10) 

~ ( t )  = sinKt[ C o s K t  - - sinxt (3.11) 
K X 

(3.12) 

Finally using the identities (3.3), (3.4), (3.5) and (3.9) in (3.8), we get the solution of 
the problem (1.4) as 

x ((m + n + r + s h +  (m + r  - n  - s)qz)] dqldqz (3.146) 
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and a@), p(t)  and y ( r )  are given by (3.10), (3.11) and (3.12), respectively. 
The algebraic technique which we have used in the present work provided us with a 

powerful and feasible tool to solve a wide class of partial differential equation. and it can 
be regarded as a useful alternative to more classical methods that do not provide the same 
generality. To see that, let us turn our attention to find the solution of the Schrodinger 
equation (1.4) by employing the classical method. To do so we shall use the definition 
given by (2.4) together with (1.3) and (1.4), then we have. . 

(3.15) 

By changing the variables 41 and q2 according to (2.10) we find 

(3.16) 

Under the condition o z A (physical condition), we can express the general solution in 
the form 

x expl-i(n' + m' + l)kt] (3.17) 

where N is the normalizing constant, and k is given by (3.7). On reverting to physical 
quantities and calculating the normalizing constant we have the following expression 

(3.18) 

(3.19) 

Now, if we make a comparison between the two solutions in (3.13) and (3.18), we 
may say that, although the method adopted to derive (3.13) is more complicated than that in 
(3.18), it has the advantage of including all the possibilities for the Schrodinger wavefunction 
of the parametric amplifier. Furthermore, it avoids all the singularities which would appear 
in (3.18) if we did not restrict ourselves with the condition w > A. 
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